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Abstract. We present detailed results of a diagrammatic calculation of the leading two-loop QCD correc-
tions to the masses of the neutral CP-even Higgs bosons in the Minimal Supersymmetric Standard Model
(MSSM). The two-loop corrections are incorporated into the full diagrammatic one-loop result and supple-
mented with refinement terms that take into account leading electroweak two-loop and higher-order QCD
contributions. The dependence of the results for the Higgs-boson masses on the various MSSM parameters
is analyzed in detail, with a particular focus on the part of the parameter space accessible at LEP2 and the
upgraded Tevatron. For the mass of the lightest Higgs boson, mh, a parameter scan has been performed,
yielding an upper limit on mh which depends only on tan β . The results for the Higgs-boson masses are
compared with results obtained by renormalization group methods. Good agreement is found in the case
of vanishing mixing in the scalar quark sector, while sizable deviations occur if squark mixing is taken into
account.

1 Introduction

The search for the lightest Higgs boson is a crucial test
of Supersymmetry (SUSY) which can be performed with
the present and the next generation of accelerators. The
prediction of a relatively light Higgs boson is common to
all supersymmetric models whose couplings remain in the
perturbative regime up to a very high energy scale [1]. A
precise prediction for the mass of the lightest Higgs boson
in terms of the relevant SUSY parameters is necessary in
order to determine the discovery and exclusion potential of
LEP2 and the upgraded Tevatron, and for physics at the
LHC and future linear colliders, where eventually a high-
precision measurement of the mass of this particle might
be possible. A precise knowledge of the mass of the heavier
CP-even Higgs boson, mH , is important for resolving the
mass splitting between the CP-even and -odd Higgs-boson
masses.

In the Minimal Supersymmetric Standard Model
(MSSM) [2] at the tree level the mass mh of the lightest
Higgs boson is restricted to be smaller than the Z-boson
mass. However, this bound is strongly affected by the in-
clusion of radiative corrections: the dominant one-loop
corrections arise from the top and scalar-top loops which
yield terms of the form GF m4

t ln(mt̃1
mt̃2

/m2
t ) [3]. These

results have been improved by performing a complete one-
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loop calculation in the on-shell scheme, which takes into
account the contributions of all sectors of the MSSM [4–
6]. Beyond one-loop order, renormalization group (RG)
methods have been applied in order to include leading
logarithmic higher-order contributions [7–10]. In the ef-
fective potential approach diagrammatic results for the
dominant two-loop contributions have been obtained in
the limiting case of vanishing t̃-mixing and infinitely large
MA and tanβ [11]. The calculation of the leading QCD
corrections in this approach has recently been generalized
to the case of arbitrary tanβ and non-vanishing t̃-mixing
[12].

Up to now phenomenological analyses have been based
either on the RG results [7–10], or on the complete one-
loop on-shell results [4–6]. These results differ by large
leading logarithmic higher-order contributions, which are
not included in the one-loop on-shell results, but also by
non-leading one-loop contributions, which are neglected in
the RG approach. The numerical difference in the Higgs-
mass predictions between the two approaches reaches up
to 20 GeV.

Recently a Feynman-diagrammatic calculation of the
leading two-loop corrections of O(ααs) to the masses of
the neutral CP-even Higgs bosons has been performed [13,
14]. Compared to the leading one-loop result the two-loop
contribution was found to give rise to a considerable re-
duction of the mh value. The leading two-loop corrections
have been combined with the full diagrammatic one-loop
on-shell result [5] and further refinements have been in-
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cluded concerning the leading two-loop Yukawa correc-
tions of O(G2

F m6
t ) [8,15] and leading QCD corrections

beyond two-loop order.
In this paper we present in detail the steps of this cal-

culation. The results for the masses of the neutral CP-even
Higgs bosons are analyzed in terms of the relevant para-
meters of the MSSM. A parameter scan for the lightest
Higgs-boson mass is performed yielding an upper bound
for mh within the MSSM (apart from certain threshold
regions which correspond to very specific configurations
of the MSSM parameters) given exclusively in terms of
tanβ . This upper bound is discussed in view of the dis-
covery potential of LEP2 and the upgraded Tevatron. The
results for mh are compared with the corresponding re-
sults obtained by RG methods. The comparison is per-
formed both in terms of the (unobservable) parameters of
the scalar top mass matrix and in terms of the physical
stop masses and the stop mixing angle.

The paper is organized as follows: Sect. 2 contains our
notations and a description fo the renormalization proce-
dure as required for the corrections in the MSSM Higgs
sector in O(ααs). The main features of the calculation
are discussed in Sect. 3. In Sect. 4 we present a detailed
numerical analysis of the results for the neutral CP-even
Higgs-boson masses as functions of the different SUSY pa-
rameters. We perform a scan for mh over the parameters
mg̃, MA, M, µ and the t̃-mixing parameter and determine
the maximal possible values of mh as a function of tanβ .
Finally numerical comparisons are shown with results ob-
tained by renormalization group (RG) methods. In Sect. 5
we give our conclusions.

2 Renormalization

2.1 The Higgs sector of the MSSM

The Higgs sector of the MSSM consists of two Higgs dou-
blets H1, H2 with opposite hypercharges Y1 = −1 and
Y2 = +1 and non-vanishing vacuum expectation values v1
and v2. The Higgs doublets can be decomposed according
to

H1 =

(
H0

1

H−
1

)
=

(
v1 + 1√

2
(φ0

1 + iχ0
1)

−φ−
1

)

H2 =

(
H+

2

H0
2

)
=

(
φ+

2

v2 + 1√
2
(φ0

2 + iχ0
2)

)
. (1)

The vacuum expectation values define the angle β via

tanβ ≡ v2

v1
; 0 < β < π/2 . (2)

The Higgs potential, including all soft SUSY breaking
terms reads [16] (ε12 = −1):

V = m2
1|H1|2 + m2

2|H2|2 − m2
12(εabH

a
1 Hb

2 + h.c.)

+
1
8
(g1

2 + g2
2)
[|H1|2 − |H2|2

]2
+

1
2
g2

2|H†
1H2|2 , (3)

where m2
i ≡ |µ|2 + m̃2

i (i = 1, 2); m̃1, m̃2, m12 are the
soft SUSY breaking terms, and µ denotes the mixing be-
tween H1 and H2. The coupling constants of the Higgs self-
interaction are, contrary to the SM, determined through
the gauge coupling constants g1 and g2. Besides g1, g2 two
independent parameters are required to fix the potential
(3) at the tree level. Conventionally they are chosen as
tanβ and M2

A = −m2
12(tanβ + cot β ), where MA is the

mass of the CP-odd A boson.
The diagonalization of the bilinear part of the Higgs

potential, i.e. the Higgs mass matrices, is performed via
the orthogonal transformations(

H0

h0

)
=

(
cos α sinα

− sinα cos α

)(
φ0

1

φ0
2

)
(4)

(
G0

A0

)
=

(
cos β sinβ

− sinβ cos β

)(
χ0

1

χ0
2

)
(5)

(
G±

H±

)
=

(
cos β sinβ

− sinβ cos β

)(
φ±

1

φ±
2

)
, (6)

with β from (2). The mixing angle α is determined through

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z

; −π

2
< α < 0 . (7)

One gets the following Higgs spectrum:

2 neutral bosons, CP = +1 : h0, H0

1 neutral boson, CP = −1 : A0

2 charged bosons : H+, H−

3 unphysical Goldstone bosons : G0, G+, G−. (8)

The masses of the gauge bosons are given in analogy
to the SM:

M2
W =

1
2
g2
2(v2

1 + v2
2); M2

Z =
1
2
(g2

1 + g2
2)(v2

1 + v2
2);

Mγ = 0. (9)

At tree level the mass matrix of the neutral CP-even
Higgs bosons is given in the φ1-φ2-basis in terms of MZ ,
MA, and tanβ by

M2,tree
Higgs =

(
m2

φ1
m2

φ1φ2

m2
φ1φ2

m2
φ2

)
(10)

=

(
M2

A sin2 β + M2
Z cos2 β −(M2

A + M2
Z) sinβ cos β

−(M2
A + M2

Z) sinβ cos β M2
A cos2 β + M2

Z sin2 β

)
,

which by diagonalization according to (4) yields the tree-
level Higgs-boson masses

M2,tree
Higgs

α−→
(

m2
H,tree 0
0 m2

h,tree

)
. (11)

In order to slightly simplify the two-loop calculation,
we have chosen to perform it in the φ1-φ2-basis. In this
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way the angle α does not appear in the calculation of
the two-loop self-energies, but enters at the end when the
rotation into the physical basis is performed.

In order to deal with the arising divergencies and to es-
tablish the meaning of the physical parameters beyond the
tree level, one has to renormalize the Higgs and the scalar
top sector of the MSSM. For the corrections of O(ααs)
to the Higgs-boson masses, in the focus of this discussion
here, renormalization up to the two-loop level is needed.
In the following we specify the renormalization for the
relevant quantities in this calculation (explicitly listed are
only those terms that actually contribute at O(ααs)). The
renormalization of the complete one-loop contributions to
the neutral CP-even Higgs-boson masses has been per-
formed according to [5].

We use the following notation: Σ(1) and Σ(2) denote
the one- and two-loop part of an unrenormalized self-
energy, Σ̂(1) and Σ̂(2) denote the one- and two-loop part
of a renormalized self-energy, and Σ′(k2) = ∂

∂k2 Σ(k2). t1
and t2 denote the unrenormalized tadpoles; t(1) and t(2)

represent the one- and two-loop part of an unrenormalized
tadpole, and t̂1, t̂2 denote the renormalized tadpoles.

The renormalization of the masses and fields is per-
formed as follows:

M2
Z → M2

Z + δM
2 (1)
Z + δM

2 (2)
Z , (12)

M2
A → M2

A + δM
2 (1)
A + δM

2 (2)
A , (13)

ϕ1 → ϕ1Z
1/2
H1

, ϕ1 = φ0
1, χ

0
1, φ

−
1 , (14)

ϕ2 → ϕ2Z
1/2
H2

, ϕ2 = φ0
2, χ

0
2, φ

+
2 , (15)

ZHi
= 1 + δZ

(1)
Hi

+ δZ
(2)
Hi

(16)

tanβ → tanβ (1 + δ tanβ (1) + δ tanβ (2)), (17)

ti → ti + δt
(1)
i + δt

(2)
i (i = 1, 2) . (18)

This yields for the renormalized two-loop self-energies
of φ1 and φ2:

Σ̂
(2)
φ1

(k2) = Σ
(2)
φ1

(k2) + k2δZ
(2)
H1

− δV
(2)
φ1

, (19)

Σ̂
(2)
φ2

(k2) = Σ
(2)
φ2

(k2) + k2δZ
(2)
H2

− δV
(2)
φ2

, (20)

Σ̂
(2)
φ1φ2

(k2) = Σ
(2)
φ1φ2

(k2) − δV
(2)
φ1φ2

, (21)

where it is understood that the unrenormalized self-
energies at two-loop order also contain the contributions
arising from the subloop renormalization. The expressions
δV

(2)
φ1

, δV
(2)
φ2

and δV
(2)
φ1φ2

are the two-loop counterterm con-
tributions from the Higgs potential:

δV
(2)
φ1

= δM
2 (2)
Z cos2 β + δM

2 (2)
A sin2 β

−δt
(2)
1

e

2MW sW
cos β (1 + sin2 β )

+δt
(2)
2

e

2MW sW
cos2 β sinβ

+δZ
(2)
H1

(
M2

Z cos2 β + M2
A sin2 β

)
+δ tanβ (2) cos2 β sin2 β (M2

A − M2
Z), (22)

δV
(2)
φ2

= δM
2 (2)
Z sin2 β + δM

2 (2)
A cos2 β

−δt
(2)
2

e

2MW sW
sinβ (1 + cos2 β )

+δt
(2)
1

e

2MW sW
sin2 β cos β

+δZ
(2)
H2

(
M2

Z sin2 β + M2
A cos2 β

)
−δ tanβ (2) cos2 β sin2 β (M2

A − M2
Z), (23)

δV
(2)
φ1φ2

= −δM
2 (2)
Z sinβ cos β − δM

2 (2)
A sinβ cos β

−δt
(2)
1

e

2MW sW
sin3 β

−δt
(2)
2

e

2MW sW
cos3 β

−δZ
(2)
H1

sinβ cos β

2
(
M2

A − M2
Z

)
−δZ

(2)
H2

sinβ cos β

2
(
M2

A − M2
Z

)
−δ tanβ (2) 1

2
sin 2β cos 2β (M2

A + M2
Z), (24)

with the electroweak mixing angle s2
W = 1 − c2

W , c2
W =

M2
W /M2

Z .
The counterterms are fixed by imposing on-shell renor-

malization conditions for the renormalized self-energies.
For the A boson this reads:

Re Σ̂A(M2
A) = 0 . (25)

The tadpole conditions are:

t̂1 = 0, t̂2 = 0 . (26)

The conditions for the tadpoles have the consequence that
the vi remain the minima of the Higgs potential also at
the two-loop level.

The resulting expressions for the renormalization con-
stants contributing to the leading two-loop corrections
to the neutral CP-even Higgs-boson masses, expressed in
terms of unrenormalized self-energies and tadpoles, are
given in Sect. 3.1.

2.2 The scalar quark sector of the MSSM

Renormalization in the squark sector is needed in the
present calculation at the one-loop level, i.e. at O(αs). As
above, we work in the on-shell scheme. In the following
the formulas are written for one flavor.

The squark mass term of the MSSM Lagrangian is
given by

Lmf̃
= −1

2

(
f̃†

L, f̃†
R

)
Z

(
f̃L

f̃R

)
, (27)

where

Z =


M2

Q̃
+M2

Z
cos 2β (I

f
3

−Qf s2
W

)+m2
f

mf (Af −µ{cot β ;tan β })

mf (Af −µ{cot β;tan β}) M2
Q̃′+M2

Z
cos 2β Qf s2

W
+m2

f


,

(28)
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and {cot β ; tanβ } corresponds to {u; d}-type squarks.
The soft SUSY breaking term MQ̃′ is given by:

MQ̃′ =

{
MŨ for right handed u-type squarks
MD̃ for right handed d-type squarks

. (29)

In order to diagonalize the mass matrix and to deter-
mine the physical mass eigenstates the following rotation
has to be performed:(

f̃1

f̃2

)
=

(
cos θf̃ sin θf̃

− sin θf̃ cos θf̃

)(
f̃L

f̃R

)
. (30)

The mixing angle θf̃ is given for tanβ > 1 by:

cos θf̃ = (31)√√√√ (m2
f̃R

− m2
f̃1

)2

m2
f (Af − µ{cot β ; tanβ })2 + (m2

f̃R
− m2

f̃1
)2

sin θf̃ = ∓ sgn
[
Af − µ{cot β ; tanβ }

]
(32)

×
√√√√ m2

f (Af − µ{cot β ; tanβ })2

m2
f (Af − µ{cot β ; tanβ })2 + (m2

f̃R
− m2

f̃1
)2

.

The negative sign in (32) corresponds to u-type squarks,
the positive sign to d-type ones. m2

f̃R
= M2

Q̃′ + M2
Z

× cos 2β Qfs2
W + m2

f denotes the lower right entry in the
squark mass matrix (28). The masses are given by the
eigenvalues of the mass matrix:

m2
f̃1,2

=
1
2

[
M2

Q̃
+ M2

Q̃′

]
+

1
2
M2

Z cos 2β If
3 + m2

f (33)


±
cf
2

√[
M2

Q̃
−M2

Q̃′+M2
Z

cos 2β (I
f
3

−2Qf s2
W

)

]2
+4m2

f

(
Au−µ cot β

)2

±
cf
2

√[
M2

Q̃
−M2

Q̃′+M2
Z

cos 2β (I
f
3

−2Qf s2
W

)

]2
+4m2

f

(
Ad−µ tan β

)2

cf = sgn
[
M2

Q̃
− M2

Q̃′ + M2
Z cos 2β (If

3 − 2Qfs2
W )
]

(34)

for u-type and d-type squarks, respectively. For most of
our discussions (see Sect. 4) we make the choice

MQ̃ = MQ̃′ =: mq̃ . (35)

Since the non-diagonal entry of the mass matrix (28) is
proportional to the fermion mass, mixing becomes partic-
ularly important for f̃ = t̃, in the case of tanβ � 1 also
for f̃ = b̃.

For an on-shell renormalization it is convenient to ex-
press the squark mass matrix in terms of the physical
masses mf̃1

, mf̃2
and the mixing angle θf̃ :

Z =

(
cos2 θf̃m2

f̃1
+ sin2 θf̃m2

f̃2
sin θf̃ cos θf̃ (m2

f̃1
− m2

f̃2
)

sin θf̃ cos θf̃ (m2
f̃1

− m2
f̃2

) sin2 θf̃m2
f̃1

+ cos2 θf̃m2
f̃2

)
.

(36)

Af can be written as follows:

Af =
sin θf̃ cos θf̃ (m2

f̃1
− m2

f̃2
)

mf
+ µ{cot β ; tanβ }. (37)

The renormalization of the fields, the masses, and the
mixing angle is then performed via

f̃L → f̃L(1 +
1
2
δZf̃L

) (38)

f̃R → f̃R(1 +
1
2
δZf̃R

) (39)

m2
f̃i

→ m2
f̃i

+ δm2
f̃i

(40)

θf̃ → θf̃ + δθf̃ . (41)

In the mass eigenstate basis, the field renormalization
reads:(

f̃1

f̃2

)
→
(

1 + 1
2δZf̃1

1
2δZf̃12

1
2δZf̃21

1 + 1
2δZf̃2

)(
f̃1

f̃2

)
, (42)

with (
δZf̃1

δZf̃2

)
=

(
cos2 θf̃ sin2 θf̃
sin2 θf̃ cos2 θf̃

)(
δZf̃L

δZf̃R

)
(43)

δZf̃12
= sin θf̃ cos θf̃ (δZf̃R

− δZf̃L
) = δZf̃21

(44)

=
sin θf̃ cos θf̃

cos2 θf̃ − sin2 θf̃
(δZf̃2

− δZf̃1
).

The renormalized diagonal and non-diagonal self-
energies in this basis have the following structure:

Σ̂f̃1
(k2) = Σf̃1

(k2) − δm2
f̃1

+ (k2 − m2
f̃1

)δZf̃1
(45)

Σ̂f̃2
(k2) = Σf̃2

(k2) − δm2
f̃2

+ (k2 − m2
f̃2

)δZf̃2
(46)

Σ̂f̃1f̃2
(k2) = Σf̃1f̃2

(k2) − (m2
f̃1

− m2
f̃2

)δθf̃

+(k2 − 1
2
(m2

f̃1
+ m2

f̃2
))δZf̃12

. (47)

We impose the following on-shell renormalization con-
ditions:

Re Σ̂f̃1
(m2

f̃1
) = 0 (48)

Re Σ̂′
f̃1

(m2
f̃1

) = 0 (49)

Re Σ̂f̃2
(m2

f̃2
) = 0 (50)

Re Σ̂′
f̃2

(m2
f̃1

) = −Re Σ′
f̃1

(m2
f̃1

) + Re Σ′
f̃2

(m2
f̃2

) (51)

Re Σ̂f̃1f̃2
(m2

f̃1
) = 0, (52)

which determines the renormalization constants to be

δm2
f̃1

= Re Σf̃1
(m2

f̃1
) (53)

δm2
f̃2

= Re Σf̃2
(m2

f̃2
) (54)

δZf̃1
= −Σ′

f̃1
(m2

f̃1
) (55)

δZf̃2
= δZf̃1

⇒ δZf̃12
= 0 (56)

δθf̃ =
1

m2
f̃1

− m2
f̃2

Σf̃1f̃2
(m2

f̃1
). (57)
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The unsymmetric renormalization condition (51) is chosen
for convenience since it leads to δZf̃2

= δZf̃1
and accord-

ingly to δZf̃12
= 0, which simplifies the expression for the

counterterm of the mixing angle. In (52) we have imposed
the condition that the non-diagonal self-energy vanishes
at q2 = m2

f̃1
. Alternatively one could choose q2 = m2

f̃2
,

instead; the numerical difference arising from these differ-
ent choices is irrelevant for the results of the Higgs-boson
masses, as we have checked explicitly.

Taking into account that neither δµ nor δ tanβ are of
O(αs), one obtains from (37):

δAf =
sin θf̃ cos θf̃ (m2

f̃1
− m2

f̃2
)

mf
(58)

×
[

1 − 2 sin2 θf̃
sin θf̃ cos θf̃

δθf̃ +
δm2

f̃1
− δm2

f̃2

m2
f̃1

− m2
f̃2

− δmf

mf

]
.

For completeness we also list the expression for the
quark mass counterterm in the on-shell scheme,

δmf = mf

(
ΣV

f (m2
f ) + ΣS

f (m2
f )
)
, (59)

where the scalar functions in the decomposition of the
fermion self-energy Σf (p) are defined according to

Σf (p) = p/ΣV
f (p2) + p/γ5Σ

A
f (p2) + mfΣS

f (p2). (60)

3 Calculation of the neutral CP-even
Higgs-boson masses

3.1 Leading two-loop contributions
to the Higgs-boson self-energies

The dominant one-loop contributions to the Higgs-boson
mass matrix in (10) are given by terms of the form
GF m4

t ln(mt̃1
mt̃2

/m2
t ), which arise from t- and t̃-loops.

They can be obtained by evaluating the contribution of
the t–t̃-sector to the φ1,2 self-energies at zero external mo-
mentum from the Yukawa part of the theory (neglecting
the gauge couplings). Accordingly, the leading contribu-
tions to the one-loop corrected Higgs-boson masses are
derived by diagonalizing the matrix

M2,1−loop
Higgs =

(
m2

φ1
− Σ̂

(1)
φ1

(0) m2
φ1φ2

− Σ̂
(1)
φ1φ2

(0)
m2

φ1φ2
− Σ̂

(1)
φ1φ2

(0) m2
φ2

− Σ̂
(1)
φ2

(0)

)
,

(61)
where the Σ̂(1) denote the one-loop Yukawa contributions
of the t–t̃-sector to the renormalized one-loop φ1,2 self-
energies. For completeness, we list here the explicit form
of these dominant one-loop corrections (in the numerical
results given in Sect. 4 we use the complete one-loop on-
shell result as given in [5]):

Σ̂
(1)
φ1

(0) =
3GF m4

t√
2π2 sin2 β

µ2(At − µ cot β )2

(m2
t̃1

− m2
t̃2

)2

×
(

1 −
m2

t̃1
+ m2

t̃2

m2
t̃1

− m2
t̃2

ln
mt̃1

mt̃2

)
,

Σ̂
(1)
φ1φ2

(0) =
3GF m4

t

2
√

2π2 sin2 β

[
−µ(At − µ cot β )

m2
t̃1

− m2
t̃2

ln
m2

t̃1

m2
t̃2

−2µAt(At − µ cot β )2

(m2
t̃1

− m2
t̃2

)2

×
(

1 −
m2

t̃1
+ m2

t̃2

m2
t̃1

− m2
t̃2

ln
mt̃1

mt̃2

)]
,

Σ̂
(1)
φ2

(0) =
3GF m4

t√
2π2 sin2 β

[
ln
(

mt̃1
mt̃2

m2
t

)

+
At(At − µ cot β )

m2
t̃1

− m2
t̃2

ln
m2

t̃1

m2
t̃2

+
A2

t (At − µ cot β )2

(m2
t̃1

− m2
t̃2

)2

×
(

1 −
m2

t̃1
+ m2

t̃2

m2
t̃1

− m2
t̃2

ln
mt̃1

mt̃2

)]
. (62)

By comparison with the full one-loop result [4–6] it
has been shown that these contributions indeed contain
the bulk of the one-loop corrections. They typically ap-
proximate the full one-loop result within 5 GeV.

In order to derive the leading two-loop contributions
to the masses of the neutral CP-even Higgs bosons we
have evaluated the QCD corrections to (61) [13,14]. Ac-
cordingly, we have calculated the O(ααs) contribution of
the t–t̃-sector to the φ1,2 self-energies at zero momentum
transfer, neglecting the gauge couplings. Because of the
large value of the strong coupling constant these are ex-
pected to be the most sizable two-loop corrections (see
also [11]).

The leading two-loop contributions to the φ1,2 self-
energies are given, according to (19)-(21), by

Σ̂
(2)
φ1

(0) = Σ
(2)
φ1

(0) − δV
(2)
φ1

, (63)

Σ̂
(2)
φ2

(0) = Σ
(2)
φ2

(0) − δV
(2)
φ2

, (64)

Σ̂
(2)
φ1φ2

(0) = Σ
(2)
φ1φ2

(0) − δV
(2)
φ1φ2

, (65)

and for the leading contributions the potential countert-
erms (22)–(24) simplify to

δV
(2)
φ1

= +δM
2 (2)
A sin2 β

−δt
(2)
1

e

2MW sW
cos β (1 + sin2 β ) (66)

+δt
(2)
2

e

2MW sW
cos2 β sinβ ,

δV
(2)
φ2

= +δM
2 (2)
A cos2 β

−δt
(2)
2

e

2MW sW
sinβ (1 + cos2 β ) (67)

+δt
(2)
1

e

2MW sW
sin2 β cos β ,

δV
(2)
φ1φ2

= −δM
2 (2)
A sinβ cos β
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Fig. 1. Feynman diagrams for the contribu-
tion of squark and quark loops to the Higgs-
boson self-energies at the two-loop level (H =
φ1, φ2, A)

−δt
(2)
1

e

2MW sW
sin3 β (68)

−δt
(2)
2

e

2MW sW
cos3 β .

From the on-shell renormalization conditions (25)–(26)
we obtain for the counterterms in (66)–(68)

δM
2 (2)
A = Σ

(2)
A (0) (69)

and
δt

(2)
1 = −t

(2)
1 , δt

(2)
2 = −t

(2)
2 . (70)

3.2 Evaluation of the relevant Feynman diagrams

The calculations have been performed using Dimensional
Reduction (DRED) [17], which is necessary in order to
preserve the relevant SUSY relations. Naive application

(without an appropriate shift in the couplings) of Dimen-
sional Regularization (DREG) [18], on the other hand,
does not lead to a finite result. The same observation has
also been made in [11].

The Feynman diagrams contributing to the φ1, φ2 and
A self-energies are depicted in Fig. 1.1 The Feynman dia-
grams for the tadpole diagrams are shown in Fig. 2.

There are three classes of diagrams: pure scalar dia-
grams (Fig. 1a–c, Fig 2a), diagrams with gluon exchange
(Fig. 1d–h, Fig 2b–c), and diagrams with gluino exchange
(Fig. 1i–l, Fig 2d–e). These diagrams have to be sup-
plemented by the corresponding one-loop diagrams with
counterterm insertions, which are depicted in Fig. 3 and
in Fig. 4. The counterterm insertions are generated by
the renormalization in the top and scalar top sector (see

1 The diagrams with a closed gluon line give zero contribu-
tion in DREG and DRED, they are omitted here
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Fig. 2. Feynman diagrams for the contributions of squark and
quark loops to the Higgs-boson tadpoles at the two-loop level
(H = φ1, φ2)

Sect. 2.2). They are calculated from the Feynman dia-
grams in Fig. 5.

The gluon-exchange contribution of O(αs) to the
quark mass counterterm reads in DRED:

δgmq =
αs

π
mq

(
−1

δ
+ γE + ln

(
m2

q

4πµ2

)
− 5

3

)
+ O(δ),

(71)
where 2δ = 4 − n with n the space–time dimension, γE is
Euler’s constant, and µ is the ’t Hooft scale. The explicit
form of the other counterterms of the quark and scalar
quark sector can be found in [19].

Some of the diagrams shown in Figs. 1, 2 vanish when
they are combined with the corresponding counterterm
contributions of Figs. 3, 4. From the pure scalar diagrams
only Fig. 1a yields a non-vanishing contribution. The di-
agrams Fig. 1b–c are canceled exactly with their corre-
sponding counterterm diagrams. Here the mass renorma-
lization for the diagonal terms (with two identical squarks)
and the mixing-angle renormalization for the non-diagonal
terms (with two different squarks) are needed. The same
applies for the tadpole diagram Fig. 2a together with the
counterterm diagram Fig. 4b. The diagrams Fig. 1f are ex-
actly canceled with the corresponding diagram with coun-
terterm insertion Fig. 3b. The same applies for the tadpole
diagrams Fig. 2b together with the counterterm diagram
Fig. 4b.

We now briefly describe the evaluation of the two-
loop diagrams. As explained above, the calculation in-
volves irreducible two-loop diagrams at zero momentum-
transfer and counterterm diagrams. In deriving our re-
sults we have made strong use of computer algebra tools:

the diagrams were generated with the Mathematica pack-
age FeynArts[20]. For this purpose we have implemented
a model file which contains the relevant part of the MSSM
Lagrangian, i.e. all SUSY propagators (t̃1, t̃2, b̃1, b̃2, g̃)
needed for the QCD-corrections and the appropriate ver-
tices
(Higgs boson-squark vertices, squark-gluon and squark-
gluino vertices). The program inserts propagators and ver-
tices into the graphs in all possible ways and creates the
amplitudes including all symmetry factors. The evaluation
of the two-loop diagrams and counterterms was performed
with the Mathematica package TwoCalc[21]. By means
of two-loop tensor integral decompositions it reduces the
amplitudes to a minimal set of standard scalar integrals,
consisting in this case of products of the basic one-loop
integrals A0, B0 [22] (the B0 functions originate from the
counterterm contributions only) and the two-loop func-
tion T134, which is the genuine two-loop scalar integral at
zero momentum-transfer (vacuum integral). This integral
is known for arbitrary internal masses and admits a com-
pact representation for δ → 0 in terms of logarithms and
dilogarithms (see for instance [23]). It should be noted that
from the expansion of the one-loop two-point function B0,

B0(q2, ma, mb) =
1
δ

+Bfin
0 (q2, ma, mb)+ δ Bδ

0(q2, ma, mb),

(72)
only the term Bfin

0 contributes, while Bδ
0 drops out in our

final result. From the output generated with TwoCalc a
FORTRAN code was created which allows a fast calculation
for a given set of parameters. This code has been imple-
mented into the FORTRAN program FeynHiggs[24], see be-
low.

Our results for the two-loop φ1,2 self-energies are given
in terms of the SUSY parameters tanβ , MA, µ, mt̃1

, mt̃2
,

θt̃, and mg̃. In the general case the results are by far too
lengthy to be given here explicitly. In the special case of
vanishing mixing in the t̃-sector, µ = 0, and mt̃1

= mt̃2
=

mt̃, a relatively compact expression can be derived which
is given in [13]. We have performed an expansion of this
result for large values of mg̃. It yields for the leading terms

Σ̂
(2)
φ2

= CF
α

π

αs

π

3 m2
t

2 s2
W sin2 β

[− ln2(m2
g̃) + ln(m2

g̃)
]

+O(m0
g̃). (73)

This shows that the gluino does not decouple from the
two-loop result, contrary to the case of the two-loop QCD
contributions to the ρ-parameter in the MSSM [19,25].

In [11] a result for the limiting case

mt̃ = mt̃1
= mt̃2

= mg̃ � mt, tanβ → ∞ (74)

has been given. In this limit we obtain

Σ̂
(2)
φ1

(0) = 0, Σ̂
(2)
φ1φ2

(0) = 0,

Σ̂
(2)
φ2

(0) = −CF
α

π

αs

π

9 m4
t

4s2
W M2

W

× ln

(
m2

t̃

m2
t

)[
ln

(
m2

t̃

m2
t

)
+ 2

]
, (75)
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Fig. 3. One-loop counterterm contribu-
tions to the Higgs boson self-energies at the
two-loop level (H = φ1, φ2, A)
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Fig. 4. One-loop counterterm contributions to the Higgs-
boson tadpoles at the two-loop level (H = φ1, φ2)

which agrees with the corresponding result given in [11].

3.3 Determination of the Higgs-boson masses

In the Feynman-diagrammatic approach the Higgs-boson
masses are derived beyond tree level by determining the
poles of the h − H-propagator matrix whose inverse is
given by

(∆Higgs)
−1 = (76)

−i

(
q2 − m2

H,tree + Σ̂H(q2) Σ̂hH(q2)
Σ̂hH(q2) q2 − m2

h,tree + Σ̂h(q2)

)
,

where again the Σ̂ denote the renormalized Higgs-boson
self-energies, now in the h − H-basis.

Determining the poles of the matrix ∆Higgs in (76) is
equivalent to solving the equation[

q2 − m2
h + Σ̂h(q2)

] [
q2 − m2

H + Σ̂H(q2)
]

−
[
Σ̂hH(q2)

]2
= 0. (77)

In our calculation the complete one-loop result for the
Higgs-boson self-energies in the on-shell scheme [5] is com-
bined with the leading two-loop contributions, which have

been outlined in the previous section. The matrix (76)
therefore contains the renormalized Higgs-boson self-
energies

Σ̂s(q2) = Σ̂(1)
s (q2) + Σ̂(2)

s (0), s = h, H, hH, (78)

where the momentum dependence is neglected only in the
two-loop contribution.

Since the two-loop contribution has been calculated in
the φ1-φ2-basis, a rotation into the h-H-basis, according
to (4), has to be performed:

Σ̂
(2)
H = cos2 α Σ̂

(2)
φ1

+ sin2 α Σ̂
(2)
φ2

+ 2 sinα cos α Σ̂
(2)
φ1φ2

Σ̂
(2)
h = sin2 α Σ̂

(2)
φ1

+ cos2 α Σ̂
(2)
φ2

− 2 sinα cos α Σ̂
(2)
φ1φ2

Σ̂
(2)
hH = − sinα cos α

(
Σ̂

(2)
φ1

− Σ̂
(2)
φ2

)
+(cos2 α − sin2 α )Σ̂(2)

φ1φ2
. (79)

We have implemented two further corrections beyond
O(ααs) into the prediction for mh, which are illustrated
in Figs. 6, 7, 9 and 10. The leading two-loop Yukawa cor-
rection of O(G2

F m6
t ) is taken over from the result obtained

by renormalization group methods. It reads [8,15]

∆m2
h =

9
16π4 G2

F m6
t

[
X̃t + t2

]
(80)

with

X̃ =

[(
m2

t̃2
− m2

t̃1

4m2
t

sin2 2θt̃

)2

×
(

2 −
m2

t̃2
+ m2

t̃1

m2
t̃2

− m2
t̃1

log

(
m2

t̃2

m2
t̃1

))

+
m2

t̃2
− m2

t̃1

2m2
t

sin2 2θt̃ log

(
m2

t̃2

m2
t̃1

)]
, (81)

t =
1
2

log

(
m2

t̃1
m2

t̃2

m4
t

)
. (82)

The second higher-order contribution which has been
implemented concerns leading QCD corrections beyond



S. Heinemeyer et al.: The masses of the neutral CP-even Higgs bosons in the MSSM 351

g

qi qi

qi

g

qi qj

q

qi qj

qk

(a) (b) (c)

qi

q q

g

g

q q

q

(d) (e)

Fig. 5. One-loop diagrams for the squark and
quark mass counterterms and for the squark
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−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
M t

   LR
 /mq ~

0

20

40

60

80

100

120

140

160

m
h 

[G
eV

]

1−loop
2−loop
2−loop (running mt)
2−loop (running mt), Yukawa term incl.

mq ~ = 500 GeV, mg ~ = 500 GeV, MA = 500 GeV
M = mq ~, µ = − mq ~

tanβ = 40

tanβ = 1.6

Fig. 6. One- and two-loop results for mh as a function of
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t /mq̃ for two values of tan β . The corrections beyond
O(ααs) discussed in the text are shown separately

two-loop order, taken into account by using the MS top
mass2

mt = mt(mt) ≈ mt

1 + 4
3 π αs(mt)

(83)

for the two-loop contributions instead of the pole mass,
mt = 175 GeV. In the t̃-mass matrix, however, we con-
tinue to use the pole mass as an input parameter. Only
when performing the comparison with the RG results we
use mt in the t̃-mass matrix for the two-loop result, since
in the RG results the running masses appear everywhere.
This three-loop effect gives rise to a shift up to 1.5 GeV
in the prediction for mh.

The complete one-loop calculation together with the
leading two-loop corrections and the other corrections be-
yond O(ααs) have been implemented into the FORTRAN
code FeynHiggs[24]. This code can be linked to existing
programs as a subroutine, thus providing an accurate cal-
culation of mh and mH which can be used for further

2 The functional dependence of mt(mt) is known up to O(α2
s)

[26]. Since mt(mt) enters only at the two-loop level, we have
incorporated only the one-loop correction to mt(mt), thus ne-
glecting only contributions of O(αα3

s) in mh

phenomenological analyses. FeynHiggs is available via its
WWW page http://www-itp.physik.uni-karlsruhe.de/
feynhiggs.

4 Numerical results for mh and mH

4.1 Dependence of the results
on the MSSM parameters

In this subsection we give a detailed discussion of the de-
pendence of mh on the parameters of the MSSM. For
tanβ we restrict ourselves to two typical values which
are favored by SUSY-GUT scenarios [27]: tanβ = 1.6 for
the SU(5) scenario and tanβ = 40 for the SO(10) sce-
nario. Other parameters are MZ = 91.187 GeV, MW =
80.375 GeV, GF = 1.16639 10−5 GeV−2, αs(mt) =
0.1095, mt = 175 GeV, and mb = 4.5 GeV (if not in-
dicated differently). The parameter M appearing in the
plots is the SU(2) gaugino mass parameter. The other
gaugino mass parameter, M1, is fixed via the GUT rela-
tion

M1 =
5
3

s2
W

c2
W

M . (84)

The scalar top masses and the mixing angle are related to
the parameters Mt̃L

, Mt̃R
and MLR

t of the t̃ mass matrix,
which reads

M2
t̃ =

(
M2

t̃L
+m2

t
+cos 2β ( 1

2 − 2
3 s2

W
)M2

Z
mtMLR

t

mtMLR
t

M2
t̃R

+m2
t
+ 2

3 cos 2β s2
W

M2
Z

)
,

(85)
with

MLR
t = At − µ cot β . (86)

In the figures below we have chosen mq̃ ≡ Mt̃L
= Mt̃R

(if
not indicated differently).

Figure 6 shows the result for mh obtained from the
diagrammatic calculation of the full one-loop and lead-
ing two-loop contributions. The two contributions beyond
O(ααs) discussed above are shown in separate curves. For
comparison the pure one-loop result is also given. The re-
sults are plotted as a function of MLR

t /mq̃, where mq̃ is
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Fig. 7. One- and two-loop results for mH as a function of
MLR

t /mq̃ for two values of tan β . The running top mass cor-
rection discussed in the text is shown separately

fixed to 500 GeV. The two-loop contributions give rise to
a large reduction of the one-loop result of 10–20 GeV. The
two corrections beyond O(ααs) both increase mh by up to
2 GeV. A minimum occurs around MLR

t = 0 GeV which
we refer to as ‘no mixing’. A maximum in the two-loop
result for mh is reached for about MLR

t /mq̃ ≈ ±2 in the
tanβ = 1.6 scenario as well as in the tan β = 40 scenario.
This case we refer to as ‘maximal mixing’. The position of
the maximum is shifted compared to its one-loop value of
about MLR

t /mq̃ ≈ ±2.4. The Yukawa correction and the
insertion of the running top mass have only a negligible
effect on the location of the maximum.

Figure 7 depicts the result for the heavy Higgs-boson
mass, mH , obtained in the same way as mh above. The
only difference is that no Yukawa term has been included.
In the plot we have chosen the small value MA = 75 GeV,
close to the lower experimental bound, since only for a
light A boson the higher-order corrections give a sizable
contribution (see also Fig. 8). Here the values for mH ob-
tained for small tanβ are larger than for tanβ = 40. The
values of MLR

t /mq̃ for which mH is maximal depend in
this case on tan β and the sign of MLR

t .
Both Higgs-boson masses are shown in Fig. 8 for low

and high tanβ and the no-mixing and the maximal-
mixing case, where the latter case corresponds to the def-
inition according to Fig. 6 for the light Higgs boson. For
mH sizable corrections at the one- and two-loop level are
obtained only for MA

<∼ 200 GeV for tanβ = 1.6 and for
MA

<∼ 120 GeV for tanβ = 40.
More relevant for todays’ colliders is the mass of the

lighter Higgs boson, mh, on which we will focus in the
following discussion. In Fig. 9 mh is shown in the two
scenarios with tan β = 1.6 and tanβ = 40 as a func-
tion of mq̃ for no mixing and maximal mixing and for
MA = 200, 1000 GeV. The tree-level, the one-loop and the
two-loop results with the two corrections beyond O(ααs)
are shown (the values of mq̃ are such that the correspond-
ing t̃-masses lie within the experimentally allowed region).
In all scenarios of Fig. 9 the two-loop corrections give rise

to a large reduction of the one-loop value of mh. The ef-
fect is generally larger in the tanβ = 1.6 scenario, and
for maximal mixing and large MA. The inclusion of the
Yukawa correction and the running top mass leads to
a slight shift in mh towards higher values. This effect
amounts up to 20% of the two-loop correction. In the
tanβ = 1.6 scenario with mq̃ = 1 TeV, mh reaches about
75 (81) GeV for MA = 200 (1000) GeV in the no-mixing
case, and 94 (101) GeV in the maximal-mixing case. For
tanβ = 40 the respective values of mh are 112 GeV in
the no-mixing case, and 126 GeV in the maximal-mixing
case for both values of MA. The peaks in the plots for
MA = 1 TeV are due to the threshold MA = mb̃1

+mb̃2
in

the one-loop contribution, originating from the sbottom-
loop diagram in the A self-energy.

The dependence of mh on MA is depicted in Fig. 10
in the two scenarios with tan β = 1.6 and tanβ = 40 for
no mixing and maximal mixing for mq̃ = 500, 1000 GeV.
In all scenarios of Fig. 10 the two-loop corrections give
rise to a large reduction of the one-loop value of mh. A
saturation effect can be observed for MA

>∼ 300 (150) GeV
in the tanβ = 1.6 (40) scenario. The peaks in the plots
for MA = 350 GeV are due to the threshold MA = 2 mt

in the one-loop contribution, originating from the top-loop
diagram in the A self-energy.

Allowing for a splitting between the parameters Mt̃L
,

Mt̃R
in the t̃-mass matrix yields maximal values of mh

which are approximately the same as for the case mq̃ =
Mt̃L

= Mt̃R
, provided that one sets

mq̃∣∣M
t̃L

=M
t̃R

= max{Mt̃L
, Mt̃R

}∣∣∣Mt̃L
6=Mt̃R

, (87)

see Fig. 11. However, the location of the maximal Higgs-
boson mass, depending on MLR

t , is shifted towards smaller
values, typically by about 40%. The numerical difference
in mh in the two splitting scenarios Mt̃L

/Mt̃R
= 300/1000

and Mt̃L
/Mt̃R

= 1000/300 is small. They differ by up
to 2 GeV only in the large tanβ scenario when MLR

t >
1000 GeV.

The variation of mh with mt is rather strong. The sce-
narios for no mixing and maximal mixing and for tanβ =
1.6 and tanβ = 40 are shown in Fig. 12, where mt is
varied around the central value of mt = 175 GeV by
±10 GeV. The variation of mh is stronger for low tanβ
and larger mq̃: in the tanβ = 1.6 scenario mh varies
by more than 10 GeV and about 20 GeV for no-mixing
and maximal-mixing, respectively. In the tanβ = 40 sce-
nario the respective values are less than 10 GeV and about
15 GeV.

Varying tanβ around the value tanβ = 1.6 has a rel-
atively large impact on mh (higher values for mh are ob-
tained for larger tanβ ), while the effect of varying tan β
around tanβ = 40 is marginal. This is shown in Fig. 13
for MA = 200, 1000 GeV, mq̃ = 200, 1000 GeV for the no-
mixing and the maximal-mixing scenario. For tanβ > 15
the variation is less than 1 GeV3.

3 A non-negligible effect can arise for large tan β if µ is also
large. This is briefly discussed below in the context of the µ-
dependence of mh
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In Fig. 14 mh is shown as a function of M , the soft
SUSY breaking parameter in the chargino and neutralino
sector (see Sect. 84). In our calculation M enters only in
the one-loop self-energies. The variation is less than 4 GeV
for the whole M parameter space. For increasing M the
result for mh decreases in general.

The dependence of mh on µ, the Higgs mixing para-
meter, is depicted in Fig. 15. The parameter µ enters via
the non-diagonal Higgs-squark coupling at one- and two-
loop order and via the chargino and neutralino sector in
the one-loop self-energies. It should be noted that for the
plots in Fig. 15 we have set mb = 0 GeV, thus suppressing
the contribution of the b− b̃-sector. The reason is that for
large µ and for large tanβ some Higgs-sbottom couplings
can become rather large, which makes the perturbative
calculation questionable in this case. The variation of mh

with µ in Fig. 15 is relatively weak, not exceeding 3 GeV.
A maximum (for the choice M = 400 GeV) for mh lies
between µ = −200 GeV and µ = −100 GeV. For decreas-
ing M the maximum is reached for slightly smaller values
of µ, see also Sect. 4.2.

Finally we show the dependence on the gluino mass,
mg̃, which enters only at the two-loop level. Fig. 16 de-
picts mh as a function of mg̃ in the scenarios with mq̃ =

500, 1000 GeV for tanβ = 1.6 and tanβ = 40 in the no-
mixing and the maximal-mixing case. Small variations be-
low 1 GeV occur in the no-mixing scenario, while change
in mh up to 4 GeV arises in the maximal-mixing scenario.
mh reaches a maximum at about mg̃ ≈ 0.8 mq̃. Since the
parameter mg̃ is absent in the RG approach, a variation
of mh with mg̃ can directly be seen as a deviation of the
diagrammatic result from the RG result, see Sect. 4.3.

As pointed out in [14] it is desirable to express the
predictions for the observable mh in terms of other physi-
cal observables. This provides the possibility to directly
compare results obtained by different approaches mak-
ing use of different renormalization schemes. Therefore
we show in Fig. 17 the dependence of mh on the para-
meters mt̃1

, mt̃2
and θt̃, which, since we are working in

the on-shell scheme, directly correspond to the physical
ones. We show mh as a function of mt̃2

for ∆mt̃ = 0 GeV
and θt̃ = 0 (no mixing) and for ∆mt̃ = 340 GeV and
θt̃ = −π/4 (maximal mixing), where ∆mt̃ ≡ mt̃2

− mt̃1
.

The choice of ∆mt̃ ≈ 340 GeV corresponds to MLR
t /mq̃ ≈

2 in terms of the soft SUSY breaking parameters. The
two-loop results shown here contain also the corrections
beyond O(ααs). In these plots we have furthermore im-
posed the ρ -parameter constraint: We have required that
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Fig. 11. The mass of the lightest Higgs boson as a function of MLR
t for differently split values of the soft SUSY breaking terms.

The curves in the plots correspond to the values Mt̃L
/Mt̃R

= 1000/1000, 300/1000 and 1000/300

the contribution of the third generation of scalar quarks
to the ρ-parameter [19,25] does not exceed the value of
1.3 ·10−3, which corresponds approximately to the resolu-
tion of ∆ρ when it is determined from experimental data
[28]. For tanβ = 1.6 mh reaches about 76 (82) GeV for
MA = 200 (1000) GeV, mt̃2

= 1 TeV and no mixing in the
t̃-sector. In the maximal-mixing case the reached values
of mh are 94 (101) GeV. In the tanβ = 40 scenario, mh

reaches 114 (127) GeV in the no-mixing (maximal-mixing)
case for both values of MA. The peaks in the plots for
MA = 1 TeV and maximal mixing in the t̃-sector around
mt̃2

= 660 GeV are due to the threshold MA = mt̃1
+mt̃2

in the one-loop contribution, originating from the stop-
loop diagram in the A self-energy.

4.2 Upper bound for mh as a function of tan β

Since, as shown in Fig. 13, smaller values for mh are ob-
tained for small tanβ , this part of the parameter space
can to a large extend be covered at todays’ colliders. The
discovery limit for mh at LEP2 is expected to be slightly
above 100 GeV [29]. In this context it is of special interest
to know the maximally possible value for mh as a function
of tanβ in the MSSM. To this end we have performed a

parameter scan, varying mg̃, M, µ, MA and MLR
t for three

values of mt and fixed values of mq̃ and tanβ . The max-
imal values for mh, including also the Yukawa correction
and the contribution from the running top mass, were
reached (in the case mt = 175 GeV) for4

mg̃ ≈ 0.8 mq̃

M ≈ 0 GeV
µ ≈ 0 GeV

MA ≈
{

800 GeV for small tanβ

360 GeV for large tanβ

MLR
t ≈ 2 mq̃ (88)

in all scenarios.
The value for MA in (88) needs some further explana-

tion: as one can see in Fig. 10, due to a one-loop threshold
effect the value of mh can become very large for MA =
2 mt. For large tanβ this threshold effect results in a big-
ger mh value for MA in the region around 2mt than for
larger values of MA (with MA < 1500 GeV, where we

4 Due to threshold effects very high values for mh can occur.
Since this is regarded as an accidental effect, these isolated
points of parameter space are not considered here
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Fig. 12. The mass of the lightest Higgs boson is shown as a function of mt: the scenarios of no mixing and maximal mixing
are depicted for low and high tan β , and µ = −200 GeV, M = 400 GeV

stopped our scan.) Of course the exact value MA = 2mt =
2 · 175 GeV = 350 GeV would be a very specific choice,
giving a wrong impression of the possible size of mh. (Ex-
actly at the threshold also finite width effects for the A
boson would have to be taken into account.) Therefore
we have chosen the value MA = 360 GeV which is not
directly at the threshold, thus giving a more realistic im-
pression about the maximally possible values for mh. The
choice M = µ = 0 GeV is experimentally excluded. We
nevertheless use these values since the difference in mh

to the case with experimentally not excluded M and µ is
very small, typically below 0.5 GeV.

In Fig. 18 we show the maximal Higgs-boson mass
value, including also the corrections beyond O(ααs), as
a function of tanβ ; the other parameters are chosen ac-
cording to (88). For the top-quark mass the most recent
experimental value mt = 173.8 GeV [30] is chosen and,
since mh grows with increasing mt, the experimental value
plus one and plus two standard deviations (mt = 178.8,
183.8 GeV)5. The common squark mass parameter is cho-
sen to be mq̃ = 1000 GeV as a high, and mq̃ = 2000 GeV
as a very high value. On the left side of Fig. 18 we show

5 One should note, however, that the highest value for mt is
disfavored in the MSSM by internal consistency [31]

the full tanβ range (tanβ ≤ 50), whereas on the right
side we focus on the range especially interesting for LEP2
and the upgraded Tevatron (tanβ ≤ 5).

In the tanβ ≤ 5 plot we have chosen MA = 800 GeV.
In the tanβ ≤ 50 plot, however, we have chosen MA =
800 GeV only for tanβ ≤ 4; for larger values we have
switched to MA = 360 GeV. For the value tanβ = 4 one
gets about the same maximal value for mh for both choices
of MA.

In the interesting region around tanβ = 1.6 the cov-
ered region of the tanβ -parameter space depends strongly
on the maximally accessible energy of todays’ colliders, see
Table 1. For an exclusion limit of mh > 107 GeV, for in-
stance, LEP2 covers tanβ < 1.6 completely only if mt is
constrained to its present 1 σ limit. On the other hand,
taking a very conservative point of view and choosing mt

at the 2σ bound, no limit on tanβ can be set, even for
mq̃ = 1000 GeV.

One should keep in mind, however, that the Higgs-
boson masses depicted in Fig. 18 are the maximally possi-
ble upper values, i.e. for smaller mixing in the t̃-sector the
region tanβ < 1.6 can be covered by LEP2 for all other
sets of parameters. One can also see that a precise mea-
surement of mt is decisive in order to set stringent bounds
on tanβ in the MSSM.
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Fig. 13. The mass of the lightest Higgs boson is shown as a function of tan β . mh is plotted for the scenarios with MA =
200, 500 GeV and mq̃ = 500, 1000 GeV in the no-mixing and the maximal-mixing case
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Fig. 15. The mass of the lightest Higgs boson is shown as a function of µ, the Higgs mixing parameter. The mass of the bottom
quark, mb, is set to zero in order to avoid unnaturally large one-loop effects

Table 1. Maximal values for mh for different choices of mt, mq̃ and tan β . All other
parameters have been chosen according to (88). (All masses are in GeV.)

tan β = 1.6 tan β = 1.7 tan β = 1.8 tan β = 1.9 tan β = 2.0

mq̃ = mq̃ = mq̃ = mq̃ = mq̃ =

mt 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

173.8 103.0 106.1 104.4 107.4 105.8 108.8 107.2 110.1 108.5 111.3

178.8 108.1 111.6 109.4 112.9 110.8 114.2 112.1 115.4 113.3 116.6

183.8 113.4 117.4 114.7 118.6 116.0 119.8 117.2 120.9 118.4 122.0

In conclusion, our results confirm that for the scenario
with tanβ = 1.6 the parameter space of the MSSM can be
covered to a very large extent. Only for maximal mixing,
very large soft SUSY breaking parameters in the t̃-sector
and mt at its upper (1 − 2)σ limit the light Higgs boson
can escape the detection at LEP2. For increasing tan β ,
however, the parameter space in which the Higgs boson is
not accessible at LEP2 increases rapidly.

Concerning the large tanβ region, LEP2 and the up-
graded Tevatron can probe only the region of no mixing
in the t̃-sector. The LHC and a future linear e+e−-collider
are needed in order to test the parameter space with large
t̃-mixing.

In an analogous way we have also analyzed the maxi-
mal value for mh as a function of the physical parame-
ters, see Fig. 19 and Table 2. We have chosen mt̃2

=
1000, 2000 GeV, ∆mt̃ = 340 GeV and θt̃ = −π/4. The
other MSSM parameters are chosen according to (88).
Fig. 19 shows the result for the maximal range of tanβ
and for the interesting range for LEP2, tanβ ≤ 5. The re-
sults in Fig. 19 and Table 2 are slightly lower than the val-
ues obtained with the unphysical input parameters. This
is due to the fact that the values obtained for the squark
masses in the first scenario (for all other parameters cho-
sen to be equal) are always larger than for the latter case
with physical input parameters. The analysis of the upper
bound of mh, however, can be taken over directly from
the case with unphysical input parameters.

4.3 Numerical comparison with the RG approach

We now turn to the comparison of our diagrammatic re-
sults with the predictions obtained via RG methods. For
this comparison we made use of the FORTRAN code corre-
sponding to [9], except for the one-loop results in Figs. 20
and 21, where we used the code described in [10]6.

We begin with the case of large values of MA, for which
the RG approach is most easily applicable and is expected
to work most accurately. In order to study different con-
tributions separately, we have first compared the diagram-
matic one-loop on-shell result [5] with the one-loop leading
log result (without renormalization group improvement)
given in [10]. Since the available code uses the running
top mass mt = mt(mt) ≈ 167.3 GeV we have also used
this top mass for the full diagrammatic one-loop calcu-
lation. In Fig. 20 the lightest Higgs-boson mass is shown
in the no-mixing scenario, i.e. MLR

t = 0 GeV, whereas in
Fig. 21 mh is shown for increasing mixing in the t̃-sector.
We found very good agreement, typically within 1 GeV
for both mixing cases and low and high tanβ . Only for
very small values of mq̃ a deviation up to 2 GeV arises.
For values of MA below 100 GeV (which are not shown
here) and large mixing in the t̃-sector deviations of about
5 GeV occur.

6 The RG results of [9] and [10] agree within about 2 GeV
with each other
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Fig. 16. The mass of the lightest Higgs boson as a function of mg̃ for a common value of MA = 500 GeV, mq̃ = 500, 1000 GeV
for the no-mixing and the maximal-mixing case and for low and high tan β

Table 2. Maximal values for mh for different choices of mt, mt̃2
and tan β . All other

parameters have been chosen according to (88). (All masses are in GeV.)

tan β = 1.6 tan β = 1.7 tan β = 1.8 tan β = 1.9 tan β = 2.0

mt̃2
= mt̃2

= mt̃2
= mt̃2

= mt̃2
=

mt 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

173.8 101.8 105.9 103.3 107.2 104.7 108.6 106.1 109.9 107.5 111.2

178.8 106.6 111.3 108.0 112.6 109.4 113.9 110.8 115.2 112.1 116.4

183.8 111.5 116.9 112.9 118.1 114.2 119.4 115.5 120.6 116.7 121.7

In the next step of comparison we analyzed the no-
mixing case at the two-loop level: we have compared our
diagrammatic result for the no-mixing case, including the
Yukawa correction and the running top mass effect, with
the RG results obtained in [9]. We have adopted the scale
M (the SU(2) gaugino mass parameter) as M = mq̃, in
order to treat it in the same way as it has been done in the
RG approach. As can be seen in Fig. 22, after the inclusion
of the corrections beyond O(ααs) the diagrammatic result
for the no-mixing case agrees very well with the RG re-
sult. For the scenario with MA = 1000 GeV the deviation
between the results exceeds 2 GeV only for tan β = 1.6

and mq̃ < 150 GeV. For MA = 200 GeV the deviation is
in general slightly larger than for MA = 1000 GeV, but
does not exceed 2 GeV.

The RG results do not contain the gluino mass as a
parameter. Hence, varying mg̃, which has been discussed
in Sect. 4.1, gives rise to an extra deviation. In the no-
mixing case this extra deviation does not exceed 1 GeV.
Varying the other parameters µ and M in general does
not lead to a sizable effect in the comparison with the
corresponding RG results (as long as MLR

t is taken as
input and a variation of µ does not affect the t̃-mixing.)
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Fig. 17. The mass of the lightest Higgs boson in terms of the physical parameters mt̃1
, mt̃2

and θt̃, where ∆mt̃ ≡ mt̃2
− mt̃1

.
The scenarios ∆mt̃ = 0 GeV, θt̃ = 0 (no mixing) and ∆mt̃ = 340 GeV, θt̃ = −π/4 (maximal mixing) are shown

Finally we consider the situation where mixing in the
t̃-sector is taken into account. In Fig. 23 our diagram-
matic result, including the Yukawa correction and the
running top mass effect, is compared with the RG re-
sults [9] as a function of MLR

t /mq̃ for the cases tanβ =
1.6 and tanβ = 40, and for mq̃ = 500, 1000 GeV and
MA = 200 GeV. The MA = 1000 GeV scenario is de-
picted in Fig. 24 for the same set of parameters. The
point MLR

t /mq̃ = 0 corresponds to the plots shown in
Fig. 22, except that the parameter µ is set to µ = −mq̃

here. For larger t̃-mixing, sizable deviations between the
diagrammatic and the RG results occur. They can reach
5 GeV for moderate mixing and become very large for
|MLR

t /mq̃| >∼ 2.5. As already mentioned above, the maxi-
mal value for mh in the diagrammatic approach is reached
for MLR

t /mq̃ ≈ ±2, whereas the RG results have a maxi-
mum at MLR

t /mq̃ ≈ ±2.4, i.e. at the one-loop value. This
holds for all combinations of tanβ , mq̃ and MA. In the
case of positive MLR

t , the maximal values for mh reached
in the diagrammatic calculation are up to 5 (3) GeV larger
than the ones of the RG method for tan β = 1.6 (40). The
dependence on MLR

t is asymmetric; for negative MLR
t

about the same maximal values are reached in the two
approaches.

The diagrammatic result varies with mg̃ as shown in
Fig. 16. In the case of mixing in the t̃-sector this leads in
general to a larger effect than in the no-mixing case and
shifts the diagrammatic result relative to the RG result
within ±2 GeV.

Up to now we have compared the results of our di-
agrammatic on-shell calculation and the RG methods in
terms of the (unphysical) soft SUSY breaking parameters
of the t̃-mass matrix Mt̃L

, Mt̃R
and MLR

t , since the avail-
able numerical codes for the RG results [9,10] are given
in terms of these parameters. However, since the two ap-
proaches rely on different renormalization schemes, the
meaning of these non-observable parameters is not pre-
cisely the same in the two approaches starting from two-
loop order. Indeed we have checked that assuming fixed
values for the physical parameters mt̃1

, mt̃2
, and θt̃ and

deriving the corresponding values of the parameters Mt̃L
,

Mt̃R
and MLR

t in the on-shell scheme as well as in the
MS scheme, sizable differences occur between the values
of the mixing parameter MLR

t in the two schemes. On the
other hand the parameters Mt̃L

, Mt̃R
are approximately

equal in both schemes. Thus, part of the different shape
of the curves in Fig. 23 and Fig. 24 may be attributed to
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Fig. 18. The maximally possible value for mh, including all refinement terms, as a function of tan β , depending on the
unphysical parameters mq̃ and MLR

t . The other MSSM parameters have been chosen according to (88)

a different meaning of the parameter MLR
t in the on-shell

scheme and in the RG calculation.
In order to avoid this problem in comparing results

obtained by different approaches making use of different
renormalization schemes, we find it preferable to compare
predictions for physical observables in terms of other ob-
servables (instead of unphysical parameters). Therefore we
switch from the set of unphysical parameters to a set of
physical parameters:

Mt̃L
, Mt̃R

, MLR
t → mt̃2

, ∆mt̃(≡ mt̃2
− mt̃1

), θt̃ . (89)

In Fig. 25 we compare the results for the lightest Higgs-
boson mass, obtained by the Feynman-diagrammatic
method and by the RG method, in terms of this new set
of parameters: mh is shown as a function of mt̃2

with the
mass difference ∆mt̃ ≡ mt̃2

− mt̃1
and the mixing angle

θt̃ as further input parameters. In the context of the RG
approach the running t̃-masses, derived from the t̃-mass
matrix, are considered as an approximation for the phys-
ical masses. In our approach, on the other hand, since we
are working in the on-shell scheme, the t̃-masses and the
mixing angle directly correspond to physical parameters.
In Fig. 25 we have furthermore implemented the same ∆ρ

constraints on the range of the third generation scalar
quark masses as in Fig. 17.

Similarly to the comparison shown in Fig. 23 and 24,
very good agreement is found in Fig. 25 between the re-
sults of the two approaches in the case of vanishing t̃-
mixing. The deviation is typically less than 1 GeV and
never exceeds 2 GeV. Using the physical parameters as
input, the maximal-mixing scenario is realized by setting
θt̃ = −π/4 and ∆mt̃ ≈ 340 GeV (i.e. the t̃-masses ob-
tained for MLR

t /mq̃ ≈ 2 have a mass difference of about
340 GeV.) In this scenario again (as in Figs. 23 and 24)
the diagrammatic result yields values for mh which are
higher by about 5 GeV. The peaks in the plots for MA =
1 TeV and maximal mixing in the t̃-sector around mt̃2

=
660 GeV are again due to the threshold MA = mt̃1

+ mt̃2
in the one-loop contribution, originating from the stop-
loop diagram in the A self-energy.

5 Conclusions

Using the Feynman diagrammatic method we have calcu-
lated the leading O(ααs) corrections to the masses of the
neutral CP-even Higgs bosons in the MSSM. The two-loop
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Fig. 19. The maximally possible value for mh, including all refinement terms, as a function of tan β , depending on the physical
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Fig. 20. Comparison between the one-loop Feynman-diagrammatic calculations and the results obtained by renormalization
group methods [10]. The mass of the lightest Higgs boson is shown for the two scenarios with tan β = 1.6 and tan β = 40 as a
function of mq̃ for MA = 200, 1000 GeV
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Fig. 21. Comparison between the one-loop Feynman-diagrammatic calculations and the results obtained by renormalization
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Fig. 22. Comparison between the Feynman-diagrammatic calculations and the results obtained by renormalization group
methods [9]. The mass of the lightest Higgs boson is shown for the scenarios with tan β = 1.6 and tan β = 40, MA =
200, 1000 GeV for the case of vanishing mixing in the t̃-sector
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Fig. 24. Comparison between the Feynman-diagrammatic calculations and the results obtained by renormalization group
methods [9]. The mass of the lightest Higgs boson is shown for the two scenarios with tan β = 1.6 and tan β = 40 as a function
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result has been implemented into the prediction based
on the complete diagrammatic one-loop on-shell result.
Two further corrections beyond O(ααs) have been added
in order to incorporate leading electroweak two-loop and
higher-order QCD contributions. The results have been
obtained using the on-shell scheme, which means a re-
normalization of all sectors of the MSSM at one-loop or-
der and of the Higgs-boson sector at two-loop order. In
our two-loop calculation we have imposed no restrictions
on the parameters of the Higgs and scalar top sector of
the model. Thus the results are valid for arbitrary values
of the relevant MSSM parameters. The complete result
has been implemented into the FORTRAN program Feyn-
Higgs[24] which is available via its WWW page
http://www-itp.physik.uni-karlsruhe.de/feynhiggs.
In this way we provide the at present most precise pre-
diction for mh and mH based on Feynman-diagrammatic
calculations.

The two-loop corrections lead to a large reduction of
the one-loop on-shell result. We have performed a detailed
analysis of the dependence of mh on the various MSSM

parameters. Concerning the scalar top sector the analy-
sis has been carried out in terms of the (unphysical) soft
SUSY breaking parameters Mt̃L

, Mt̃R
and MLR

t as well as
in terms of the physical parameters mt̃2

, ∆mt̃ ≡ mt̃2
−mt̃1

and θt̃.
A scan over the parameters µ, M, mg̃, MA and MLR

t

has been performed in order to determine the maximally
possible value for mh as a function of tanβ . Our results
show that for the scenario with tanβ = 1.6 the parame-
ter space of the MSSM can be covered almost completely.
Only for maximal mixing, very large soft SUSY breaking
parameters in the t̃-sector and mt at its upper experimen-
tal limit the light Higgs boson can escape the detection
at LEP2 in this scenario. Concerning the large tanβ re-
gion, LEP2 and the upgraded Tevatron can probe only
the region of no mixing in the t̃-sector.

We have compared our results, obtained by a Feyn-
man diagrammatic calculation (where also the corrections
beyond O(ααs) have been included), with the results ob-
tained via RG methods. Concerning the one-loop contri-
butions we find very good agreement between these two
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Fig. 25. Comparison between the Feynman-diagrammatic calculations and the results obtained by renormalization group
methods [9] in terms of physical parameters. The mass of the lightest Higgs boson is shown for the two scenarios with tan β = 1.6
and tan β = 40 and for MA = 200, 1000 GeV as a function of the heavier physical t̃ mass mt̃2

. For the curves with θt̃ = 0 a
mass difference ∆mt̃ = 0 GeV is taken, whereas for θt̃ = −π/4 we choose ∆mt̃ = 340 GeV, for which the maximal Higgs-boson
masses are achieved

approaches. The same is valid for the two-loop corrections
in the case of vanishing mixing in the t̃-sector. On the
other hand, in the case of non-vanishing mixing sizable de-
viations between the two approaches occur. For moderate
mixing they reach up to 5 GeV, for |MLR

t /mq̃| >∼ 2.5 they
can be very large. In the diagrammatic approach the max-
imal value for mh is reached for MLR

t /mq̃ ≈ ±2, whereas
the RG results have a maximum at MLR

t /mq̃ ≈ ±2.4, i.e.
at the one-loop value. This holds for all combinations of
tanβ , mq̃ and MA. The fact that the parameter mg̃ is
absent in the RG results can give rise to an additional
deviation between the two approaches of about ±2 GeV.

We have furthermore discussed the issue of how results
obtained via different approaches using different renorma-
lization schemes can be readily compared to each other
also when corrections beyond one-loop order are incor-
porated. For this purpose it is adequate to express the
prediction for the Higgs-boson masses in terms of other
physical observables, i.e. the physical masses and mixing
angles of the model.

Accordingly, we have compared the results obtained
by our diagrammatic two-loop calculation with those ob-

tained by RG methods in terms of the physical observ-
ables mt̃2

, ∆mt̃ ≡ mt̃2
− mt̃1

and θt̃. As for the compari-
son in terms of the unphysical parameters, we have found
good agreement for the case of vanishing mixing in the
t̃-sector. For large splitting between the t̃-masses, how-
ever, the Higgs-boson masses obtained by the Feynman
diagrammatic calculation are about 5 GeV larger than the
ones calculated in the RG approach.
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